Kui Yu, Professor
Kui Yu
Ph.D. Professor
Email: kuiyu@scu.edu.cn
Address: 24, South Section 1, Yihuan Road, Chengdu
Dept.: Institute of atomic and molecular physics.
Education
Ph.D. Department of Chemistry, McGill University, Canada, 1998
M.S. Institute of Polymer Chemistry, Nankai University, 1991
B.S. Department of Chemistry, Sichuan University, 1988
Biography
Prof. Kui Yu joined Sichuan University in 2014. She is the Executive Editors for ACS Applied Materials & Interfaces. Prof. Kui Yu obtained her Ph.D. at McGill University in Canada from the department of Chemistry and has since gone on to build a successful carrier in the field of Quantum Dots. During her time at National Research Council Canada (NRC) in Ottawa, Kui Yu specialized in the fundamental study and applications of colloidal semiconductor colloidal nanocrystals and has published many articles. Her primary focus recently is on the study the formation pathways of magic-sized and regular quantum dots.
Research Areas
The synthesis and characterization of colloidal photoluminescent semi-conductor nano-crystals, aiming at bio-oriented and energy-related applications.
Grants and Projects
1. 2021 Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University No. 2021030.
2. 2020-2021 State Key Laboratory of Polymer Materials Engineering of Sichuan University No. sklpme2020-2-09.
3. 2020-2021 the Applied Basic Research Programs of Science and Technology Department of Sichuan Province 2020YJ0326.
4. 2020 Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University No. 202035.
5. 2019 Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University No. 201935.
6. 2018-2022 National Natural Science Foundation of China (NSFC) No. 21773162.
7. 2018-2020 State Key Laboratory of Polymer Materials Engineering of Sichuan University No. sklpme2018-2-08.
8. 2018 Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University No. 201830.
9. 2017 Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University No. 201731.
10. 2016-2021 National Key Research and Development Program (2016YFB 0700800).
11. 2016-2020 "Program of Introducing Talents of Discipline to Universities" (“111 Project”) by the Ministry of Education of China (MoE) and State Administration of Foreign Experts Affairs, the P.R. of China (SAFEA).
12. 2016-2019 National Natural Science Foundation of China (NSFC) No. 21573155.
13. 2015 Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University No. 2015025.
Professional Honors and Awards
• 2020 Academic Leader of Sichuan Province
• 2019 “Rongpiao” Project Award of Chengdu City
• 2017 Hosting the 2018 13th Sino-US Forum on Nanoscale Science and Technology
• 2019 to present ACS Applied Materials and Interfaces (IF 8.5) Associate Editor
• 2015-2019 ACS Applied Materials and Interfaces (IF 8.5) Executive Editor
• 2013-2015 ACS Applied Materials and Interfaces (IF 8.5) Associate Editor
Selected Publications
Sichuan University
36. Yang, X.; Zhang, M.; Shen, Q.; Li, Y.; Luan, C.; Yu, K. The Precursor Compound of Two Types of ZnSe Magic-Sized Clusters. Nano Res. 2022, 15, 465−474.
35. Li, Y.; Rowell, N.; Luan, C.; Zhang, M.; Chen, X.; Yu, K. A Two-Pathway Model for the Evolution of Colloidal Compound Semiconductor Quantum Dots and Magic-Size Clusters. Adv. Mater. 2021, 10.1002/adma.202107940.
34. Yang, Y.; Li, Y.; Luan, C.; Rowell, N.; Wang, S.; Zhang, C.; Huang, W.; Chen, X.; Yu, K. Transformation Pathways in Colloidal CdTeSe Magic-Size Clusters. Angew. Chem. Int. Ed. 2021, 10.1002/anie.202114551.
33. Zhao, M.; Chen, Q.; Zhu, Y.; Liu, Y.; Zhang, C.; Jiang, G.; Zhang, M.; Yu, K. Precursor Compound Enabled Formation of Aqueous-Phase CdSe Magic-Size Clusters at Room Temperature. Nano Res. 2021, 10.1007/s12274-021-3858-1.
32. Zhu, J.; Cao, Z.; Zhu, Y.; Rowell, N.; Li, Y.; Wang, S.; Zhang, C.; Jiang, G.; Zhang, M.; Zeng, J.; Yu, K. Transformation Pathway from CdSe Magic-Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew. Chem. Int. Ed. 2021, 60, 20358−20365. (Highlighted by inside cover)
31. Wang, Z.; Wang, T.; Zhang, C.; Zhang, M.; Chen, X.; Fan, H.; Huang, W.; Luan, C.; Yu, K. Evolution of Two Types of ZnTe Magic-Size Clusters Displaying Sharp Doublets in Optical Absorption. J. Phys. Chem. Lett. 2021, 12, 4762−4768.
30. Shen, Q.; Luan, C.; Rowell, N.; Zhang, M.; Wang, K.; Willis, M.; Chen, X.; Yu, K. Reversible Transformations at Room Temperature among Three Types of CdTe Magic-Size Clusters. Inorg. Chem. 2021, 60, 4243−4251.
29. He, L.; Luan, C.; Rowell, N.; Zhang, M.; Chen, X.; Yu, K. Transformations Among Colloidal Semiconductor Magic-Size Clusters. Acc. Chem. Res. 2021, 54, 776−786.
(Special issue “Transformative Inorganic Nanocrystals”).
28. Wan, W.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C.; Wang, S.; Kreouzis, T.; Fan, H.; Huang, W.; Yu, K. Room-Temperature Formation of CdS Magic-Size Clusters in Aqueous Solutions Assisted by Primary Amines. Nat. Commun. 2020, 11, 4199. (Nat. Commun. Editors’ highlights) (Special highlight: 物理化学学报 水相CdS 幻数团簇的室温合成及形成路径探究)
27. Zhang, H.; Luan, C.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J.; Fan, H.; Huang, W.; Chen, X.; Yu, K. A Room-Temperature Formation Pathway for CdTeSe Alloy Magic-Size Clusters. Angew. Chem. Int. Ed. 2020, 59, 16943−16952. (Highlighted by inside cover) (Special highlight: 物理化学学报 CdTeSe合金幻数团簇的室温合成和形成机理研究)
26. Hui, J.; Jiang, Y.; Gökçinar, Ö. Ö.; Tang, J.; Yu, Q.; Zhang, M.; Yu, K. Unveiling the Two-Step Formation Pathway of Cs4PbBr6 Nanocrystals. Chem. Mater. 2020, 32, 4574−4583.
25. Li, L.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C.; Wang, S.; Lu, J.; Fan, H.; Huang, W.; Chen, X.; Yu, K. Fragmentation of Magic-Size Cluster Precursor Compounds into Ultrasmall CdS Quantum Dots with Enhanced Particle Yield at Low Temperatures. Angew. Chem. Int. Ed. 2020, 59, 12013–12021. (Special highlight: 物理化学学报 分解幻数团簇前驱体化合物低温制备高产率超小尺寸硫化镉量子点)
24. Palencia, C.; Yu, K.; Boldt, K. The Future of Colloidal Semiconductor Magic-Size Clusters. ACS Nano 2020, 14, 1227–1235. (highlighted by front cover)
23. Chen, M.; Luan, C.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C.; Wang, S.; Zhu, X.; Fan, H.; Huang, W.; Yu, K.; Liang, B. Evolution of CdTe Magic-Size Clusters with Single Absorption Doublet Assisted by Adding Small Molecules During Prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230–2240.
22. Liu, S.; Yu, Q.; Zhang, C.; Zhang, M.; Rowell, N.; Fan, H.; Huang, W.; Yu, K.; Liang, B. Transformation of ZnS Precursor Compounds to Magic-Size Clusters Exhibiting Optical Absorption Peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75–82.
21. Hao, X.; Chen, M.; Wang, L.; Cao, Z.; Li, Y.; Han, S.; Zhang, M.; Yu, K.; Zeng, J. In Situ SAXS Probing the Evolution of the Precursors and Onset of Nucleation of ZnSe Colloidal Semiconductor Quantum Dots. Chem. Commun. 2020, 56, 2031–2034.
20. Riehle, F. S.; Yu, K. Role of Alcohol in the Synthesis of CdS Quantum Dots. Chem. Mater. 2020, 32, 1430–1438.
19. Gao, D.; Hao, X.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H.; Zhang, H.; Zhang, C.; Jiang, Y.; Zeng, J.; Zhang, M.; Yu, K. Formation of Colloidal Alloy Semiconductor CdTeSe Magic-Size Clusters at Room Temperature. Nat. Commun. 2019, 10, 1674. (Nat. Commun. Editors’ highlights)
18. Zhang, J.; Li, L.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H.; Zhang, C.; Huang, W.; Zhang, M.; Yu, K. One-Step Approach to Single-Ensemble CdS Magic-Size Clusters with Enhanced Production Yields. J. Phys. Chem. Lett. 2019, 10, 2725–2732.
17. Li, L.; Zhang, M.; Rowell, N.; Kreouzis, T.; Fan, H.; Yu, Q.; Huang, W.; Chen, X.; Yu, K. Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 6399–6408.
16. Liu, Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S.; Fan, H.; Huang, W.; Chen, X.; Yu, K. Photoluminescent Colloidal Nanohelices Self-Assembled from CdSe Magic-Size Clusters via Nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801.
15. Luan, C.; Tang, J.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H.; Yu, K. Four Types of CdTe Magic-Size Clusters from One Prenucleation Stage Sample at Room Temperature. J. Phys. Chem. Lett. 2019, 10, 4345–4353.
14. Tang, J.; Hui, J.; Zhang, M.; Fan, H.; Rowell, N.; Huang, W.; Jiang, Y.; Chen, X.; Yu, K. CdS Magic-Size Clusters Exhibiting One Sharp Ultraviolet Absorption Singlet Peaking at 361 nm. Nano Res. 2019, 12, 1437–1444.
13. Guo, X.; Gong, Q.; Borowiec, J.; Zhang, S.; Han, S.; Zhang, M.; Willis, M.; Kreouzis, T.; Yu, K. Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle-Polymer Blends. ACS Appl. Mater. Interfaces 2019, 11, 37184–37192.
12. Zhang, B.; Zhu, T.; Ou, M.; Rowell, N.; Fan, H.; Han, J.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X.; Han, S.; Zeng, J.; Yu, K. Thermally-Induced Reversible Structural Isomerization in Colloidal Semiconductor CdS Magic-Size Clusters. Nat. Commun. 2018, 9, 2499. (Special highlight: 物理化学学报 同分异构的胶体硫化镉半导体幻数团簇的可逆转化)
Liu, Z. Reversible Structural Isomerization Identified in Semiconductor CdS Magic-Size Clusters. Acta Phys. - Chim. Sin. 2018, DOI: 10.3866/PKU.WHXB201807016.)
11. Wang, L.; Hui, J.; Tang, J.; Rowell, N.; Zhang, B.; Zhu, T.; Zhang, M.; Hao, X.; Fan, H.; Zeng, J.; Han, S.; Yu, K. Precursor Self-Assembly Identified as a General Pathway for Colloidal Semiconductor Magic-Size Clusters. Adv. Sci. 2018, 5, 1800632.
10. Zhang, J.; Hao, X.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H.; Zhang, C.; Hu, C.; Zhang, M.; Yu, K. Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.
9. Zhu, D.; Hui, J.; Rowell, N.; Liu, Y.; Chen, Q. Y.; Steegemans, T.; Fan, H.; Zhang, M.; Yu, K. Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.
8. Liu, Y.; Willis, M.; Rowell, N.; Luo, W.; Fan, H.; Han, S.; Yu, K. Effect of Small Molecule Additives in the Prenucleation Stage of Semiconductor CdSe Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 6356–6363.
7. Liu, Y.; Zhang, B.; Fan, H. S.; Rowell, N.; Willis, M.; Zheng, X. T.; Che, R. C.; Han, S.; Yu, K. Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chem. Mater. 2018, 30, 1575–1584.
6. Luan, C.; Gokcinar, O. O.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H.; Yu, K. Evolution of Two Types of CdTe Magic-Size Clusters from a Single Induction Period Sample. J. Phys. Chem. Lett. 2018, 9, 5288–5295.
5. Liu, M.; Wang, K.; Wang, L.; Han, S.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F.; Zeng, J.; Yu, K. Probing Intermediates of the Induction Period Prior to Nucleation and Growth of Semiconductor Quantum Dots. Nat. Commun. 2017, 8, 15467.
4. Zhu, T.; Zhang, B.; Zhang, J.; Lu, J.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-Step Nucleation of CdS Magic-Size Nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.
3. Zhang, J.; Yang, Q.; Cao, H.; Ratcliffe, C. I.; Kingston, D.; Chen, Q. Y.; Ouyang, J.; Wu, X.; Leek, D. M.; Riehle, F. S.; Yu, K. Bright Gradient-Alloyed CdSexS1–x Quantum Dots Exhibiting Cyan-Blue Emission. Chem. Mater. 2016, 28, 618–625.
2. Yu, K.; Liu, X.; Qi, T.; Yang, H.; Whitfield, D. M.; Q, Y. C.; Huisman, E. J.; Hu, C. General Low-Temperature Reaction Pathway from Precursors to Monomers Before Nucleation of Compound Semiconductor Nanocrystals. Nat. Commun. 2016, 7, 12223.
1. Yu, K.; Liu, X. Y.; Chen, Q. Y.; Yang, H. Q.; Yang, M. L.; Wang, X. Q.; Wang, X.; Cao, H.; Whitfield, D. M.; Hu, C. W.; Tao, Y. Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature. Angew. Chem. Int. Ed. 2014, 53, 6898–6904.
National Research Council (NRC) (Canada)
26. Yu, K.; Liu, X.; Zeng, Q.; Yang, M.; Ouyang, J.; Wang, X.; Tao, Y. The Formation Mechanism of Binary Semiconductor Nanomaterials: Shared by Single-Source and Dual-Source Precursor Approaches. Angew. Chem. Int. Ed. 2013, 52, 11034–11039.
25. Yu, K.; Liu, X.; Zeng, Q.; Leek, D. M.; Ouyang, J.; Whitmore, K. M.; Ripmeester, J. A.; Tao, Y.; Yang, M. Effect of Tertiary and Secondary Phosphines on Low-Temperature Formation of Quantum Dots. Angew. Chem. Int. Ed. 2013, 52, 4823–4828.
24. Yu, K.; Ng, P.; Ouyang, J.; Zaman, M. B.; Abulrob, A.; Baral, T. N.; Fatehi, D.; Jakubek, Z. J.; Kingston, D.; Wu, X.; Liu, X.; Hebert, C.; Leek, D. M.; Whitfield, D. M. Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Appl. Mater. Interfaces 2013, 5, 2870–2880.
23. Yu, K. CdSe Magic-Sized Nuclei, Magic-Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth. Adv. Mater. 2012, 24, 1123–1132.
22. Yu, K.; Hrdina, A.; Ouyang, J.; Kingston, D.; Wu, X.; Leek, D. M.; Liu, X.; Li, C. Bright Ultraviolet ZnSe1-xSx Gradiently-Alloyed Nanocrystals via a Noninjection Approach. ACS Appl. Mater. Interfaces 2012, 4, 4302–4311.
21. Yu, K.; Hrdina, A.; Zhang, X.; Ouyang, J.; Leek, D. M.; Wu, X.; Gong, M.; Wilkinson, D.; Li, C. Highly-Photoluminescent ZnSe Nanocrystals via Non-Injection-Based Approach with Precursor Reactivity Elevated by Secondary Phosphine. Chem. Commun. 2011, 47, 8811–8813.
20. Yu, K.; Ouyang, J.; Leek, D. M. In-Situ Observation of Nucleation and Growth of PbSe Magic-Sized Nanoclusters and Regular Nanocrystals. Small 2011, 7, 2250–22262.
19. Yu, K.; Ouyang, J.; Zhang, Y.; Tung, H.; Lin, S.; Nagelkerke, R.; Kingston, D.; Wu, X.; Leek, D. M.; Wilkinson, D.; Li, C.; Chen, I.; Tao, Y. Low-Temperature Noninjection Approach to Homogeneously-Alloyed PbSexS1-x Colloidal Nanocrystals for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2011, 3, 1511–1520.
18. Fu, H.; Tsang, S.; Zhang, Y.; Ouyang, J.; Lu, J.; Yu, K.; Tao, Y. Impact of the Growth Conditions of Colloidal PbS Nanocrystals on Photovoltaic Device Performance. Chem. Mater. 2011, 23, 1805–1810.
17. Zaman, B. M.; Baral, T.; Jakubek, Z.; Zhang, J.; Lai, E.; Whitfield, D.; Yu, K. Single-Domain Antibody Bioconjugated Near-IR Quantum Dots for Targeted Cellular Imaging of Pancreatic Cancer. J. Nanosci. Nanotechnol. 2011, 11, 3757–3763.
16. Tsang, S.; Fu, H.; Ouyang, J.; Zhang, Y.; Yu, K.; Lu, J.; Tao, Y. Self-Organized Phase Segregation Between Inorganic Nanocrystals and PC61BM for Hybrid High-Efficiency Bulk Heterojunction Photovoltaic Cells. Appl. Phys. Lett. 2010, 96, 243104.
15. Yu, K.; Cui, Y.; Zaman, B. M.; Wilkins, R.; Li, C.; Wu, X.; Ouyang, J. Optical Response of CdSe Quantum Dots to Cs-137 γ Radiation. J. Nanosci. Nanotechnol. 2010, 10, 1819–1824.
14. Ouyang, J.; Kuijper, J.; Brot, S.; Kingston, D.; Wu, X.; Leek, D.; Hu, M.; Ripmeester, J. A.; Yu K. Photoluminescent Colloidal CdS Nanocrystals with High Quality via Noninjection One-Pot Synthesis in 1-Octadecene. J. Phys. Chem. C 2009, 113, 7579–7593.
13. Liu, T.; Li, M.; Ouyang, J.; Zaman, B. M.; Wang, R.; Wu, X.; Yeh, C.; Lin, Q.; Yang, B.; Yu, K. Non-Injection and Low-Temperature Approach to Colloidal Photoluminescent PbS Nanocrystals with Narrow Bandwidth. J. Phys. Chem. C 2009, 113, 2301–2308.
12. Li, M.; Ouyang, J.; Ratcliffe, C. I.; Peirtri. L.; Wu, X.; Leek, D. M.; Moudrakovski, I.; Lin, Q.; Yang, B.; Yu, K. Magic-Sized CdS Quantum Dots with Bandgap Photoemission via Non-Injection One-Pot Approach. ACS Nano 2009, 3, 3832–3838.
11. Wang, R.; Calvignanello, O.; Ratcliffe, C.; Wu, X.; Leek, D.; Zaman, B. M.; Kingston, D.; Ripmeester, J. A.; Yu, K. Homogeneously-Alloyed CdTeSe Single-Sized Nanocrystals with Bandgap Photoluminescence. J. Phys. Chem. C 2009, 113, 3402–3408.
10. Wang, R.; Ouyang, J.; Nikolaus, S.; Brestaz, L.; Zaman, B.; M.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Yu, K. Single-Sized Colloidal CdTe Nanocrystals with Strong Bandgap Photoluminescence. Chem. Commun. 2009, 8, 962–964.
9. Yu, K.; Ouyang, J.; Zaman, B. M.; Johnston, D.; Yan, F.; Li, G.; Ratcliffe, C.; Leek, D.; Wu, X.; Stupak, J.; Jakubek, Z.; Whitfield, D. Single-Sized CdSe Nanocrystals with Bandgap Photoemission via Non-Injection One-Pot Approach. J. Phys. Chem. C 2009, 113, 3390–3401.
8. Ouyang, J.; Zaman, B. M.; Yan, F.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Non-Injection One-Pot Syntheses. J. Phys. Chem. C 2008, 112, 13805–13811. (Materials Research Society (MRS) Bulletin highlighted 2008, 33.)
7. Ratcliffe, C. I.; Yu, K.; Ripmeester, J. A.; Zaman, B.; Badarau, C.; Singh, S. Solid State NMR Studies of Photoluminescent Cadmium Chalcogenide Nanoparticles. Phys. Chem. Chem. Phys. 2006, 8, 3510–3519. Invited article and chosen as “Hot Article”.
6. Yu, K.; Zaman, B.; Singh, S.; Wang, D.; Ripmeester, J. A. The Effect of Dispersion Media on Photoluminescence of Colloidal CdSe Nanocrystals Synthesized from TOP. Chem. Mater. 2005, 17, 2552–2561.
5. Yu, K.; Zaman, B.; Ripmeester, J. A. Colloidal CdSe Nanocrystals from Tri-n-Octylphosphine: Control of Growth Rate for High Quality and Large-Scale Production by Tuning Cd-to-Se Stoichiometry. J. NanoSci. NanoTechnol. 2005, 5, 669–681.
4. Yu, K.; Zaman, B.; Singh, S.; Wang, D.; Ripmeester, J. A. Colloidal CdSe Nanocrystals from Tri-n-Octylphosphine: Growth and Optical Properties from Polar and Non-Polar Solvents. J. NanoSci. NanoTechnol. 2005, 5, 659–668.
3. Yu, K.; Zaman, B.; Romanova S.; Wang, D.; Ripmeester, J. A. Sequential Synthesis of Type-II Colloidal CdTe/CdSe Core/Shell Nanocrystals. Small 2005, 1, 332–338.
2. Yu, K.; Singh, S.; Patrito, N.; Chu, V. Effect of Reaction Media on Growth and Photoluminescence of Colloidal CdSe Nanocrystals. Langmuir 2004, 20, 11161–11168.
1. Yu, K.; Wu, X.; Brinker, C.; Ripmeester, J. A. MTES-Derived Silica Thin Film with Meso-Structured Spherical Voids Investigated by TEM: (1) Meso-Structure Determination. Langmuir 2003, 19, 7282–7288. (Materials Research Society (MRS) Bulletin highlighted 2003, Oct, 698)
McMaster Univ (Canada) and Sandia National Laboratories (USA)
4. Yu, K.; Smarsly, B.; Brinker, C. J. Self-Assembly and Characterization of Mesostructured Silica Films with a 3D Arrangement of Isolated Spherical Mesopores. Adv. Funct. Mater. 2003, 13, 47-52.
3. Liu, N.; Yu, K.; Smarsly, B.; Dunphy, D. R.; Jiang, Y.; Brinker, C. J. Self-Directed Assembly of Photoactive Hybrid Silicates Derived from an Azobenzene-Bridged Silsesquioxane. J. Am. Chem. Soc. 2002, 124, 14540–14541.
2. Yu, K.; Hurd, A. J.; Eisenberg, A.; Brinker, C. J. Syntheses of Silica/Polystyrene-Block-Poly(ethylene oxide) Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales by Solvent Evaporation-Induced Self-Assembly. Langmuir 2001, 17, 7961-7965.
1. Frank, R. S.; Downey, J. S.; Yu, K.; Stöver, H. D. H. Poly (divinylbenzene-alt-maleic anhydride) Microgels: Intermediates to Microspheres and Macrogels in Crosslinking Copolymerization. Macromolecules 2002, 35, 2728–2735.
McGill University, McMaster University (Canada)
6. Yu, K.; Bartels, C.; Eisenberg, A. Morphological Transition of Vesicles to Inverted Hexagonally Packed Rods and Trapping Intermediate Structures in Dilute Solutions of PS-b-PEO. Langmuir 1999, 15, 7157–7167.
5. Yu, K.; Bartels, C.; Eisenberg, A. Vesicles with Hollow Rods in the Walls: A Trapped Intermediate Morphology in the Transition of Vesicles to Inverted Hexagonally Packed Rods in Dilute Solutions of PS-b-PEO. Macromolecules 1998, 31, 9399–9402.
4. Yu, K.; Eisenberg, A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules 1998, 31, 3509–3518.
3. Yu, K.; Zhang, L. F.; Eisenberg, A. Novel Morphologies of ''Crew-Cut'' Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution. Langmuir 1996, 12, 5980–5984.
2. Yu, K.; Eisenberg, A. Multiple Morphologies in Aqueous Solutions of Aggregates of Polystyrene-Block-Poly(ethylene oxide) Diblock Copolymers. Macromolecules 1996, 29, 6359–6361.
1. Zhang, L.; Yu, K.; Eisenberg, A. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers. Science 1996, 272 , 1777–1779.